3D depth profiling of the interaction between an AFM tip and fluid polymer solutions.

نویسندگان

  • Martin Dehnert
  • Robert Magerle
چکیده

In the atomic force microscopy (AFM) investigation of soft polymers and liquids, the tip-sample interaction is dominated by long-range van der Waals forces, capillary forces and adhesion. Furthermore, the tip can indent several tens of nanometres into the surface, and it can pull off a polymer filament from the surface. Therefore, measuring the unperturbed shape of a polymeric fluid can be challenging. Here, we study the tip-sample interaction with polystyrene droplets swollen in chloroform vapour, where we can utilize the solvent vapour concentration to adjust the specimen's mechanical properties from a stiff solid to a fluid film. With the same AFM tip, we use two different AFM force spectroscopy methods to measure three-dimensional (3D) depth profiles of the tip-sample interaction: force-distance (FD) curves and amplitude-phase-distance (APD) curves. The 3D depth profiles reconstructed from FD and APD measurements provide detailed insight into the tip-sample interaction mechanism for a fluid polymer solution. The fluid's intrinsic relaxation time, which we measure with an AFM-based step-strain experiment, is essential for understanding the tip-sample interaction mechanism. Furthermore, measuring 3D depth profiles and using APD data to reconstruct the unperturbed surface comprise a versatile methodology for obtaining accurate dimensional measurements of fluid and gel-like objects on the nanometre scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe

The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...

متن کامل

Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers

Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...

متن کامل

Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe

The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...

متن کامل

Atomic Force Microscopy Application in Biological Research: A Review Study

Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...

متن کامل

Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy.

Quantifying the tip-sample interaction forces in amplitude-modulated atomic force microscopy (AM-AFM) has been an elusive yet important goal in nanoscale imaging, manipulation and spectroscopy using the AFM. In this paper we present a general theory for the reconstruction of tip-sample interaction forces using integral equations for AM-AFM and Chebyshev polynomial expansions. This allows us to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 10 12  شماره 

صفحات  -

تاریخ انتشار 2018